
Chapter 13

Adaptive Beamforming

We have already considered deterministic beamformers for such applications as pencil beam arrays and
arrays with controlled sidelobes. Beamformers can also be developed for other design goals, including
interference or jammer suppression, target location, imaging, and shaped patterns for multiuser communica-
tions. For these applications, the ideal beamformer is adaptive, so that the radiation pattern can be adjusted
to suppress noise and interference and maximize sensitivity to the desired signal. In principle, the beam-
former could react to changes in the signal and noise voltages at the array output, but the variations in these
voltages may be too rapid to be tracked by the signal processing hardware. A better solution is to compute
array output voltage correlation matrices, in order to characterize the longer term stochastic properties of
the propagation environment.

These considerations motivate the study of statistically optimal and adaptive beamforming algorithms
that seek to optimize some measure of system performance such as average SNR using estimates of the
statistics of the environment. We will analyze adaptive beamformers from a receive point of view, although
many of the concepts to be developed can also be applied to a transmitter given feedback from a receiver or
other sensor that measures properties of the propagation environment.

13.1 Signal Steering Vectors

We will first review the model for array output voltages developed in Section 8.1. The open circuit voltages
voc,n at the terminals of a receiving antenna can be found from (8.9). These voltages as a vector voc are
transformed through a system transform matrix Q as defined in (8.4) to a vector of voltages v at the outputs
of the signal chains connected to each array element. The contribution to the array output voltages due to
the signal of interest is

vsig = Qvoc,sig (13.1)

In terms of the embedded element radiation patterns,

vsig = c1E
incQEp (13.2)

where the constant c1 is defined in (8.11), Ep is a vector of inner products of the incident field polarization
with the array embedded element patterns defined in (7.18), and Einc is the amplitude of the incident field
representing the signal of interest at the origin of the coordinate system in which the receiving array embed-
ded element radiation patterns are defined. In terms of these quantities, the signal of interest portion of the
beamformer output voltage can be expressed as

vout = wHvsig (13.3)
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where w is a beamformer weight vector.
When working with adaptive arrays, it is convenient to define the steering vector

d =
√
N‖vsig‖−1vsig (13.4)

This vector is proportional to vsig, but is scaled so that it is independent of the incident plane wave intensity.
By convention, the normalization of the steering vector is such that

‖d‖2 = dHd = N (13.5)

where N is the number of array elements.
If the signal amplitude is a function of time, then the array output voltage vector can be written using

the steering vector as
vsigs(t) = s(t)d (13.6)

where s(t) is a phasor or complex baseband representation of the signal waveform. The array output voltage
correlation matrix can be written in the form

Rsig = σ2
s ddH (13.7)

where σ2
s = E[|s(t)|2]. This is an alternate form of the rank one signal correlation matrix given in (8.24).

Since the correlation matrix Rsig has only one nonzero eigenvalue equal to σ2
sN , and the matrix trace is

equal to the sum of the eigenvalues, we have tr Rsig = σ2
sN . By analogy with (12.17) for a transmitting

array, it can be seen that σ2
s is proportional to the average available signal power at the receiver outputs ports.

The steering vector d takes on a particularly simple form if mutual coupling between array elements is
neglected. If we assume that the array elements are identical and neglect array edge effects, the open circuit
loaded element patterns become

En(r) = ejk·rnE (13.8)

where E is the field radiated by an element located at the origin, rn is the location of the nth array element,
and k is a wavevector pointing in the direction of the source. The wavevector can be expressed as

k = kk̂ (13.9)

in terms of the unit vector k̂, which is in the direction of arrival (DOA) of the incident plane wave. Neglecting
mutual coupling for identical elements with identical loads also means that the receiver output voltages are
proportional to the element open circuit voltages, since Q becomes a scaled identity matrix. Under these
assumptions, the beamformer output is

vout =
4πjre−jkr

ωµ
Eincp̂ · E(r)︸ ︷︷ ︸
c3

∑
n

w∗ne
jkk̂·rn (13.10)

From this expression, it can be seen that the steering vector has components

dn = ejkk̂·rn (13.11)

The beam output voltage is
vout = c3w

Hd (13.12)

Since k = ω/c, we can interpret the exponent kk̂ · rn = ωk̂ · rn/c = ωτn in terms of the time delay
τn = k̂ · rn/c of the signal at the nth array element relative to the signal at the origin. This allows us to view
the beamformer as a discrete filter with taps w∗n at the delays τn.
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13.2 Multiple Sidelobe Canceler (MSC)

The multiple sidelobe canceling architecture was one of the first adaptive beamforming methods developed
for array antennas. The goal is to reject an interfering signal while receiving a signal of interest. For this
system we have a primary channel andN auxiliary channels, where the primary channel is typically a single
antenna and the auxiliary channels are an array. The auxiliary signals are combined with a beamformer and
then subtracted from the primary signal.

If we denote the output of the primary channel as xp, and the auxiliary array outputs as x, then the
overall system output signal is

xout = xp −wHx (13.13)

The goal is to design the beamformer weights w to reject the undesired interferer. In the absence of the
desired signal, we want xout = 0. If we measure the outputs in the absence of the desired signal, then we
can design the beamformer weights according to

w = argmin
w

E[|xp −wHx|2] (13.14)

Expanding the expectation leads to the condition

E[xxH ]w = E[xx∗p] (13.15)

or
w = R−1

xxRxxp (13.16)

where Rxxp is a column vector. This beamformer places nulls of the overall antenna pattern on the interfer-
ing signal.

The difficulty with MSC is that the desired signal must be absent from the auxiliary outputs when
computing the weights or small in amplitude relative to noise and interference, which means that MSC is
effective for very weak desired signals. Another limitation is that MSC does not steer the main beam towards
the desired signal.

13.3 Minimum Mean Squared Error (MMSE)

The minimum mean squared error (MMSE) beamformer leads to a set of array beamformer weights that
minimizes the difference between the correlation statistics across the array for a desired received signal and
the array output. MMSE is based on the concept from signals and systems analysis that the best approx-
imation to a desired signal is obtained when the error is orthogonal to the signal, which is known as the
orthogonality principle.

If a plane wave carrying a desired signal s(t) arrives at an array along with other waves carrying noise
and interference, the MMSE beamformer is defined by the minimization problem

w = argmin
w

E[|s−wHx|2] (13.17)

where x is a vector of array output voltages. The quantity inside the square brackets is the error signal, or
the difference between the desired signal and the beamformer output.

Using the orthogonality principle, it can be shown that with the minimizing beamformer weight vector,
the error signal is statistically orthogonal to the received signal with optimal beamformer weights. This
leads to the condition

0 = E[xH(s−wHx)]

= E[xHs− xHwHx]

= E[xs∗ − xxHw]
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Because expectation is linear, the expectations of the two terms must be equal, and we have

E[xs∗] = E[xxH ]w (13.18)

In terms of correlation matrices, this leads to a linear system that can be solved for the beamformer weight
vector,

Rxs = Rxxw (13.19)

The solution is
w = R−1

xxRxs (13.20)

The MMSE beamformer weight vector is therefore obtained from the array output correlation matrix and
the cross-correlation of the signal of interest and the array outputs.

This beamformer has a nice statistical optimality property, in that it minimizes error at the beamformer
output, but calculating w requires that we know the array output covariance and the cross-covariance of the
desired signal and the array outputs. The covariances can be estimated using a model or computed using
signal processing on the array outputs and desired signal. If the SNR is low and the noise at the array outputs
is IID, then Rxx is approximately a scaled identity, and can be ignored in (13.20). Assuming that the signal
of interest and the noise are uncorrelated, the column vector Rxs is proportional to the signal steering vector
(13.4), and the MMSE beamformer reduces to the conjugate field match beamformer (7.39).

13.4 Maximum SNR Beamformer

We have already covered many aspects of SNR at the output of a beamforming array. The last remaining
topic is to find the beamformer weights that maximize SNR, or the max-SNR beamformer. We will find that
the although the max-SNR beamformer is defined in an entirely different framework, it is closely related to
the maximum directivity beamformer (7.38).

The SNR at the output of a beamformer is

SNR =
wHRsw

wHRnw
(13.21)

where Rs and Rn are the signal and noise covariance matrices, respectively. The max-SNR beamformer is
defined by

w = argmax
w

wHRsw

wHRnw
(13.22)

We have already shown in Section 7.6.2 that maximizing a ratio of quadratic forms leads to the generalized
eigenvalue problem

Rsw = λmaxRnw (13.23)

where λmax is the largest generalized eigenvalue.
If Rs is a rank one matrix of the form σ2

s ddH , corresponding to a single point source, then

w = R−1
n d (13.24)

The attained value of the SNR is

SNRmax =
(R−1

n d)Hσ2
s ddHR−1

n d

(R−1
n d)HRnR−1

n d

= σ2
s dHR−1

n d (13.25)
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This expression is essentially the ratio of the signal power σ2
s to the noise power received by the beamformer.

The noise correlation matrix is inverted, so that larger noise power corresponds to a smaller value for the
elements of R−1

n , which makes it clear that (13.25) decreases as the noise level becomes stronger.
If the noise at the array outputs consists only of spatially isotropic thermal noise, then according to

(8.30), Rn ∼ A, where A is the array embedded element pattern overlap matrix. In this case, the max-SNR
beamformer is equivalent to the maximum directivity beamformer (7.38). Physically, this can be understood
by observing that in an isotropic noise environment, the equivalent temperature of the external noise is
constant and is independent of the beamformer weights. The only degree of freedom that can be exploited
to increase SNR is to receive as much signal as possible, which is precisely what the maximum directivity
beamformer does.

For more complex noise models, in order to apply the max-SNR beamformer, the signal steering vector
and the noise correlation matrix must be measured. This process is sometimes referred to as array calibra-
tion. If the phased array is a feed on an astronomical dish antenna, for example, the noise correlation matrix
can be measured by steering the dish so that the main beam is pointed to an area of sky with no strong stars
or other radio sources. The signal steering vector can be measured by pointing the dish to a bright calibrator
source such as an intense radio galaxy. Multiple beams can be formed to produce a multipixel image by
steering the dish so that the calibrator source is in various locations relative to the boresight direction of the
dish antenna. The max-SNR weights then provide a set of beamformer coefficients that can be used to form
a high sensitivity beam to observe and create images of astronomical sources of interest.

13.5 Linearly Constrained Minimum Variance Beamformer (LCMV)

The MMSE and max-SNR beaformers result from unconstrained optimization problems. In some cases, we
wish to maximize the received signal subject to some additional constraint, such as a given level of response
to the signal of interest, a controlled beamshape, a prescribed null on an interfering source, or another type
of pattern design goal.

The basic linearly constrained minimum variance beamformer (LCMV) includes a constraint to ensure
that the desired signal is received at a specified complex voltage level. Subject to this constraint, we mini-
mize the total variance of the beamformer output, which means that we minimize noise power received from
other directions. The LCMV beamformer is defined by

w = argmin wHRxxw, subject to wHd = g (13.26)

where d is the signal steering vector. Using the method of Lagrange multipliers, the solution

w =
g∗

dHRxxd
R−1

xxd (13.27)

can be obtained. This is also known as Capon’s beamformer.
In the case of exactly known signal and noise correlation matrices and a rank one signal of interest, it can

be shown that (13.27) gives the same beamformer weight vector as the max-SNR beamformer. By extending
this derivation to a vector of constraints, LCMV can be used to place a null on a fixed interferer (g = 0),
create multiple main beams to receive multiple desired signals of interest, or obtain a desired beam shape.
If LCMV is extended to multiple constraints, there is always a tradeoff between SNR and other design
goals. Since the max-SNR beamformer achieves the best possible SNR, any other nontrivially different set
of beamformer weights realizes a lower SNR, but may be better than the max-SNR beamformer in other
respects.
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13.6 Subspace Projection

If the design goal is to place nulls on one or more intefering signals, the method of subspace projection can
be used. If the steering vector associated with an interfering signal is di, then we can form the projection
operator

P = I− 1
Ndid

H
i (13.28)

where the scale factor normalizes the vectors in the rank one term to unit length. A beamformer weight
vector from another algorithm such as max-SNR can be transformed into a new beamformer according to

wSP = Pw (13.29)

It is easy to see that if this beamformer weight vector is applied to a rank one signal response correlation
matrix due to a signal arriving with steering vector di, the response of the beamformer is zero. It is also
easy to extend this method to the case of multiple interferers.

Since the subspace projection method modifies the original beamformer weight vector, the SNR achieved
is in general modified. If the base beamformer is max-SNR, then the SNR is reduced. If the interferer is
included in the max-SNR beamformer, then the max-SNR beamformer already maximizes the ratio of signal
to interference and noise. The motivation for using the SP method to further reduce the interferer is that in
some cases, the temporal properties of the interferer makes it more harmful to the signal of interest detec-
tion process than thermal noise. In the exact case, SP reduces the interferer to zero, but if there is error in
the steering vector estimation, the pattern null is not identically zero at the interferer arrival angle. Error is
caused by correlation matrix estimation error, interferer motion, and other effects. To a degree, these sources
of error can be compensated for by using more sophisticated array signal processing [10].

Warnick & Jensen March 29, 2021



Bibliography

[1] C. A. Balanis, Advanced Engineering Electromagnetics. New York: John Wiley & Sons, 1989.

[2] “IEEE standard definitions of terms for antennas.” IEEE Std 145-2013.

[3] H. Wheeler, “Fundamental limitations of small antennas,” Proceedings of the IRE, vol. 35, no. 12,
pp. 1479–1484, 1947.

[4] L. Chu, “Physical limitations of omni-directional antennas,” Journal of Applied Physics, vol. 19,
no. 12, pp. 1163–1175, 1948.

[5] D. Sievenpiper, et al., “Experimental validation of performance limits and design guidelines for small
antennas,” IEEE Transactions on Antennas and Propagation, vol. 60, no. 1, pp. 8–19, 2012.

[6] R. Bancroft, Microstrip and Printed Antenna Design. Edison, NJ: SciTech, 2009.

[7] R. Q. Twiss, “Nyquist’s and Thevenin’s theorems generalized for nonreciprocal linear networks,” J.
Applied Phys., vol. 26, pp. 599–602, May 1955.

[8] K. F. Warnick, B. Woestenburg, L. Belostotski, and P. Russer, “Minimizing the noise penalty due to
mutual coupling for a receiving array,” IEEE Trans. Ant. Propag., vol. 57, pp. 1634–1644, June 2009.

[9] E. E. M. Woestenburg, “Noise matching in dense phased arrays,” Tech. Rep. RP-083, ASTRON,
Dwingeloo, The Netherlands, Aug. 2005.

[10] J. Landon, B. D. Jeffs, and K. F. Warnick, “Model-based subspace projection beamforming for deep
interference nulling,” Signal Processing, IEEE Transactions on, vol. 60, no. 3, pp. 1215–1228, 2012.

177


